top of page

1.) “Lung—Nano” Interactions

"Providing a comprehensive understanding in the interactions of inhaled NPs along their respiratory journey."

image.png

Summary: We have prepared a series of Au@PEG-X NPs that bear defined functional groups (X) commonly identified in atmospheric particulates. By quantitatively measuring three important variables of lung−nano interactions of Au@PEG-X NPs [i.e.,(1) composition of NP protein corona, (2) intrapulmonarycellular-level distribution, and (3) level of inflammatorymarkers], we established strong statistical correlations among them (lower channel). These correlations reveal important players of lung−nano interactions that warrant future investigations into their in vivo interplay at the molecular level.
"Yin et al. ACS Nano 2020, 13 (12), 14048–14069 (2019)"
"Yin et al. ACS Nano 2018, 12, 2088–2093"

2.) “Cell–Nanosubstrate” Interactions

"Engineering nanosubstrates for modulating cell adhesion and endocytosis."

image.png
image.png

Summary: Nanoscale roughness of substrates or isotropically presenting ligands at the nanoscale enhances the expression of clathrin in cells, thereby boosting the intracellular entry of nanoparticles (NPs) in the culture medium (left). In contrast, anisotropic ligand nanogeometry suppresses this clathrin-mediated NP entry by strengthening the association between clathrin and adhesion spots to reinforce mechanotransduced signaling (right). Our findings provide the parameters of substrate surface nanoscale roughness and ligand nanogeometry for the rational design of biomaterials for tissue engineering.
"Yin and Ho et al. Nano Lett. 2021, 21, 4, 1839–1847"
"Yin et al. Nano Lett. 2023, 23 (19), 9160–9169"

3.) SERS-based detection and theragnostics

Engineering novel nanostructure-based platforms for nucleic acid detection and in vivo tumor theragnostics.

Nucleic acid detection

image.png

In vivo tumor theragnostics

image.png

Summary: We have built a CRISPR-Cas12a/SERS integrated system to sensitively and selectively probe nucleic acids without pre-amplification (left). In addition, we have designed a novel nanostructure for ultraeffective NIR-controlled chemo/photothermal therapy for cancer guided by SERS.
"Yin et al. Theranostics 2022, 12, 5914–5930"
"Yin et al. Small, 2023, 19(6), 2206762"

ACADEMIC PUBLICATIONS

(Equal Contributions, *Corresponding Authors:)

2024

33. Yin, B., Wong, S.H.D., Deen, G.R., Bates, J.S., Pachauri, A., AlAnsari, R., Hájek, J., *Tsai, S.W., *Dodda, J.M. and Asmaki, N., 2024 (Under Review)

32. +Zhang, Q., +Li, C., Yin, B., Yan, J., Gu, Y., Huang, Y., Chen, J., Wong, S.H.D.*, Yang, M.,* 2024 (Under Review)

31. +Li, C, +Yin, B., Zhang, Q., Yan, J., Huang, Y., Chen, J., Yang, M.,* Wong, S.H.D.*, 2024 (Submitted)

30. +Huang, Y., +Zhang, Q., Lam, C.Y., Li, C., Chen, Y., Zhang, R., Zhong, Z., Yan, J., Chen, J., *Yin, B., *Wong, S.H.D., *Yang, M., An Aggregation-Induced Emission-Based Dual Emitting Nanoprobe for Detecting Intracellular pH and Unravelling Metabolic Variations in Differentiating Lymphocytes, ACS Nano 2024, 18, 24, 15935–15949 [Link]

29. Wang, H., Chen, Z., Li, T., Xie, H., Yin, B., Wong, S.H.D., Shi, Y., Zhang, A.P., Optofluidic chip with directly printed polymer optical waveguide Mach-Zehnder interferometer sensors for label-free biodetection, Biomed. Opt. Express 2024, 15(5), 3240-3250 [Link] [Editor's Pick]

28. Yin, B., Gosecka, M., Bodaghi, M., Crespy, D., Youssef, G., *Dodda, J. M., *Wong, S.H.D., Imran, A. B., Gosecki, M., Jobdeedamrong, A., Naniz, M. A., Zolfagharian, A., Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications, Chem. Eng. J., 2024, 487, 150403 [Link]

27. Chen, J., Ho, W.K.H., Yin, B., Zhang, Q., Li, C., Yan, J., Huang, Y., Hao, J., Yi, C., Zhang, Y., *Wong, S.H.D., Yang, Mo, Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein, Biosens. Bioelectron., 2024, 248, 115969 [Link] 

2023

26. Chan, C.K.W., Szeto, C.C., Lee, L.K.C., Xiao, Y., Yin, B., Ding, X., Lee, T.W.Y, Lau, J.Y.W, Choi, C.H.J., A sub-10-nm, folic acid-conjugated gold nanoparticle as self-therapeutic treatment of tubulointerstitial fibrosis, Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (42), e2305662120

25. Yin, B., Zhang, Q., Yan, J., Huang, Y., Li, C., Chen, J., Wen, W., *Wong, S.H.D., Yang, M., Nanomanipulation of Ligand  Nanogeometry Modulates Integrin/Clathrin-Mediated Adhesion and Endocytosis of Stem Cells, Nano Lett. 2023, (19), 9160–9169

24. Yin, B., Ho, L.W.C., Choi, C.H.J., How Do Cells Exocytose Nanoparticles?, Biochemistry 2023, 62 (15), 2229-2231

23. Wong, S.H.D.†; Yin, B.†; Li, Zhuo; Yuan, W.; Zhang, Q.; Xie, X.; Tan. Y,; Wong, N.; Zhang, K.; Bian, L, Mechanical manipulation of cancer cell tumorigenicity via heat shock protein signaling, Sci. Adv. 2023, 9(27), eadg9593

22. Zhang, Q., Yin B., Huang, Y., Gu, Y., Yan, J., Chen, J., Li, C., Zhang, Y., *Wong, S.H.D., *Yang, M., A dual "turn-on" biosensor based on AIE effect and FRET for in situ detection of miR- 125b biomarker in early Alzheimer's disease, Biosens. Bioelectron., 2023, 230, 115270 [Link]

21. Yin, B; Wong, W.K.; Ng, Y.M.; Yang, M.; Leung, F.K.C.; Wong, S.H.D., Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy, Pharmaceutics 2023, 15 (5), 1427

20. Huang, Y., Yin, B., *Wong, S.H.D., Multicomponent Hydrogels in Clinical and Pharmaceutical Applications, Royal Society of Chemistry Books - Multicomponent Hydrogels: Smart Materials for Biomedical Applications, 2023, Chapter-14, 449-501

19. Yin, B.,  Ho, W. K. H., Xia, X. Y., Chan, C. K. W. Zhang, Q., Ng, Y. M., Lam, C. Y. K., Wang, J. F., *Yang, M., *Wong, S. H. D., A multilayered mesoporous gold nanoarchitecture for ultraeffective near-infrared light-controlled chemo/photothermal therapy for cancer guided by SERS imaging, Small, 2023, 19(6), 2206762 [Link] [Hot Topic: Mesoporous Materials (Small)] [Hot Topic: Surfaces and Interfaces (Advanced Materials Interfaces)] [Selected for Frontispiece in (Small 6/2023) Link

(As of March/April 2023 , this 🏆 highly cited paper received enough citations to place it in the top 1% of the academic field of Materials Science based on a highly cited threshold for the field and publication year.)

2022

18. Zhang, Y., Wu H., Wang H., Yin B., Wong S.H.D., Zhang A.P., Tam H.Y., Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection, Biosens. Bioelectron, 2022, 218, 114761

17. Yin, B.; Zhang, Q.; Xia, X.; Li, C.; Ho, W. K. H.; Yan, J.; Huang, Y.; Wu, H.; Wang, P.; Yi, C.; Hao, J.; Wang, J.; Chen, H.; Wong S. H. D.; Yang, M. A CRISPR-Cas12a integrated SERS nanoplatform with chimeric DNA/RNA hairpin guide for ultrasensitive nucleic acid detection. Theranostics 2022, 12, 5914–5930.

16. Yin, B.†; Ni, J.†; Witherel C. E.†; Yang, M.; Burdick, J. A.; Wen, C.; Wong, S. H. D. Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics. Theranostics 2022, 12, 207–231.

(Featured in Theranostics WeChat subscription) (As of September/October 2022, this 🏆highly cited paper received enough citations to place it in the top 1% of the academic field of Clinical Medicine based on a highly cited threshold for the field and publication year. — Data from Essential Science Indicators)

15. Yin, B.†; Ho, W. K. H.†; Zhang, Q.; Li, C.; Huang, Y.; Yan, J.; Yang, H.; Hao, J.; Wong S. H. D.; Yang, M. Magnetic-responsive surface-enhanced Raman scattering platform with tunable hot spot for ultrasensitive virus nucleic acid detection. ACS Appl. Mater. Interfaces 2022, 14, 4714–4724.

14. Wong, W. K.†; Yin, B.†; Lam, C. Y. K.; Huang, Y.; Yan, J.; Tan, Z.; Wong S. H. D. The interplay between epigenetic regulation and CD8+ T cell differentiation/exhaustion for T cell immunotherapy. Front. Cell Dev. Biol. 2022, 9, 783227. 

 

13. Yin, B.; Yang, H.; Yang, M. Integrating soft hydrogel with nanostructures reinforces stem cell adhesion and differentiation. J. Compos. Sci. 2022, 6, 19.

12. Zhang, Q.; Yin, B.; Hao, J.; Ma, L.; Huang, Y.; Shao, X.; Li, C.; Chu, Z.; Yi, C.; Wong, S. H. D.; Yang, M. An AIEgen/graphene oxide nanocomposite (AIEgen@ GO)‐based two‐stage “turn‐on” nucleic acid biosensor for rapid detection of SARS‐CoV‐2 viral sequence. Aggregate 2022, 4(1), e195

2021

11. Lam, C. Y. K.; Zhang, Q.; Yin, B.; Huang, Y.; Wang, H.; Yang, M.; Wong, S. H. D. Recent advances in two-dimensional transition metal dichalcogenide nanocomposites biosensors for virus detection before and during COVID-19 outbreak. J. Compos. Sci. 2021, 5, 190.

10. Yin, B.†; Ho, L. W. C.†; Liu, S.; Hong, H.; Tian, X. Y.; Li, H.; Choi, C. H. J. Sub-10 nm substrate roughness promotes the cellular uptake of nanoparticles by upregulating endocytosis-related genes. Nano Lett. 2021, 21, 1839–1847. 

9. Wong, W. K.†; Yin, B.†; Rakhmatullina A.; Zhou, J.; Wong, S. H. D. Engineering advanced dynamic biomaterials to optimize adoptive T-cell immunotherapy. Eng. Regen. 2021, 2, 70–81 (Invited perspective/review)

2020

8. Ho, L. W. C.†; Yin, B.†; Dai, G.; Choi, C. H. J. Effect of surface modification with hydrocarbyl groups on the exocytosis of nanoparticles. Biochemistry 2020, 60, 1019–1030.

2019

7. Yin, B.; Chan, C. K. W.; Liu, S.; Wong, S. H. D.; Ho, L. W. C.; Zhang, L.; Leung, K. C. F.; Choi, P. C. L.; Bian, L.; Tian, X. Y.; Chan, M. N.; Choi, C. H. J. Intrapulmonary cellular-level distribution of inhaled nanoparticles with defined functional groups and its correlations with protein corona and inflammatory response. ACS Nano 2019, 13, 14048–14069.

(Featured in 納米人 WeChat subscriptions)

6. Wong, S. H. D.†; Yin, B.†; Lin, S.; Yang, B.; Li, R.; Feng, Q.; Yang, H.; Zhang, L.; Yang, Z.; Li, G.; Choi, C. H. J.; Bian, L. Anisotropic nanoscale presentation of cell adhesion ligand enhances the recruitment of diverse integrins in adhesion structures and mechanosensing-dependent differentiation of stem cells. Adv. Funct. Mater. 2019, 29, 1806822. 
 

5. Zhang, L.; Tian, X. Y.; Chan, C. K. W.; Bai, Q.; Cheng, C. K.; Chen, F. M.; Cheung, M. S. H.; Yin, B.; Yang, H.; Yung, W.-Y.; Chen, Z.; Ding, F.; Leung K. C. F.; Zhang, C.; Huang, Y.; Lau, J. Y. W.; Choi, C. H. J. Promoting the delivery of nanoparticles to atherosclerotic plaques by DNA coating. ACS Appl. Mater. Interfaces 2019, 11, 13888–13904.

2018

4. Yin, B.†; Li, K. H. K.†; Ho, L. W. C.; Chan, C. K. W.; Choi, C. H. J. Toward understanding in vivo sequestration of nanoparticles at the molecular level. ACS Nano 2018, 12, 2088–2093.

3. Yang, H.; Yao, Y.; Li, H.; Ho, L. W. C.; Yin, B.; Yung, W. Y.; Leung, K. C. F.; Mak, A. F. T.; Choi, C. H. J. Promoting intracellular delivery of sub-25 nm nanoparticles via defined levels of compression. Nanoscale 2018, 10, 15090–15102.  

2015

2. Sun, H; Yin, B.; Ma, H.; Yuan, H.; Fu, B.; Liu, L. Synthesis of a novel quinoline skeleton introduced cationic polyfluorene derivative for multimodal antimicrobial application. ACS Appl. Mater. Interfaces 2015, 7, 25390–25395.

1. Yin, B.; Wu, Y.; Ma, H.; Ma, X.; Fu, B.; Liu, J. Studies on the asymmetric catalytic Friedel-Crafts alkylation of indoles with trifluoromethyl pyruvate catalyzed by heteroarylidene-BOX-Cu Complexes. Chin. J. Org. Chem. 2015, 35, 2119–2124. 

bottom of page